metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(*u*-2-{[3-(dimethylamino)propyl]iminomethyl}phenolato- $\kappa^4 N, N', O:O$)bis[(acetato- $\kappa^2 O, O'$)cadmium(II)] monohydrate

Wen-Xuan Cai,^{a,b} Xiao-Yong Zheng,^{a,b} Hong Su^a and Yun-Long Feng^a*

^aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and ^bDepartment of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang 325035, People's Republic of China Correspondence e-mail: sky37@zjnu.cn

Received 5 June 2007; accepted 21 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.022; wR factor = 0.046; data-to-parameter ratio = 22.2.

In the crystal structure of the title compound, $[Cd_2(C_{12}H_{17}N_2O)_2(C_2H_3O_2)_2] \cdot H_2O$, the binuclear complex molecule as well as the water molecule occupy special positions on the same twofold axis. The Cd^{II} atom has a severely distorted octahedral coordination formed by two deprotonated bridging phenol O atoms, the imine and amine N atoms of the Schiff base and two O atoms of the chelating acetate group. The water H atom takes part in a hydrogen bond involving one of the acetate O atoms as an acceptor. Each water molecule forms two such bonds, thus producing isolated 1:1 complex molecule-water aggregates in the crystal structure.

Related literature

For recent studies on complexes of multidentate Schiff bases, including their application for the modeling of active sites of biological systems, see: Erxleben (2001); Ikawa et al. (1993); Mukherjee et al. (2001); Mukherjee et al. (2002); Ray et al. (2004); Saha et al. (2003);

Experimental

Crystal data

[Cd₂(C₁₂H₁₇N₂O)₂(C₂H₃O₂)₂]·H₂O $M_r = 771.46$ Tetragonal, $P\overline{4}b2$ a = 17.543 (3) Å c = 10.420 (3) Å V = 3206.8 (11) Å³

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.716, T_{\max} = 0.820$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.046$	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
S = 1.02	Absolute structure: Flack (1983),
4203 reflections	1788 Friedel pairs
189 parameters	Flack parameter: -0.014 (18)
H-atom parameters constrained	

Z = 4

Mo $K\alpha$ radiation

 $0.26 \times 0.18 \times 0.15 \text{ mm}$

21724 measured reflections

4203 independent reflections

3543 reflections with $I > 2\sigma(I)$

 $\mu = 1.37 \text{ mm}^-$

T = 293 (2) K

 $R_{\rm int}=0.030$

Table 1

Selected geometric parameters (Å, °).

Cd1-O1 ⁱ Cd1-O1 Cd1-N1	2.2685 (14) 2.2797 (16) 2.2812 (19)	Cd1-O3 Cd1-N2 Cd1-O2	2.2976 (19) 2.409 (2) 2.428 (2)
$D1^{i} - Cd1 - O1$ $D1^{i} - Cd1 - N1$ D1 - Cd1 - N1 $D1^{i} - Cd1 - O3$ D1 - Cd1 - O3 N1 - Cd1 - O3 $D1^{i} - Cd1 - N2$ $D1^{i} - Cd1 - N2$ D1 - Cd1 - N2	$\begin{array}{c} 78.30 \ (6) \\ 154.63 \ (6) \\ 80.93 \ (6) \\ 96.99 \ (6) \\ 99.08 \ (7) \\ 100.53 \ (7) \\ 93.45 \ (6) \\ 115.91 \ (7) \end{array}$	N1-Cd1-N2 O3-Cd1-N2 $O1^{i}-Cd1-O2$ O1-Cd1-O2 N1-Cd1-O2 O3-Cd1-O2 N2-Cd1-O2	82.66 (7) 144.85 (8) 110.99 (6) 151.78 (7) 94.16 (7) 54.24 (8) 90.70 (8)

Symmetry code: (i) $-y + \frac{1}{2}, -x + \frac{1}{2}, -z + 1$.

lable 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1W - H1W \cdots O3$	0.80	1.97	2.762 (3)	172

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the Foundation of the Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces (No. 0506) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2057).

References

- Bruker (2002). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Erxleben, A. (2001). Inorg. Chem. 40, 208-213.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ikawa, Y., Nagata, T. & Maruyama, K. (1993). Chem. Lett. 22, 1049–1052.
- Mukherjee, P. S., Dalai, S., Mostafa, G., Lu, T. H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem. 25, 1203–1207.
- Mukherjee, P. S., Maji, T. K., Escuer, A., Vicente, R., Ribas, J., Rosair, G., Mautner, F. A. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. 4, 943– 949.
- Ray, M. S., Ghosh, A., Bhattacharya, R., Mukhopadhyay, G., Drew, M. G. B. & Ribas, J. (2004). J. Chem. Soc. Dalton Trans. pp. 252–259.
- Saha, M. K., Dey, D. K., Samanta, B., Edwards, A. J., Clegg, W. & Mitra, S. J. (2003). J. Chem. Soc. Dalton Trans. pp. 488–492.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2828-m2829 [doi:10.1107/S1600536807052105]

Bis(μ -2-{[3-(dimethylamino)propyl]iminomethyl}phenolato- $\kappa^4 N, N', O:O$)bis[(acetato- $\kappa^2 O, O'$)cadmium(II)] monohydrate

W.-X. Cai, X.-Y. Zheng, H. Su and Y.-L. Feng

Comment

Recently there has been a growing interest in the synthesis of transition metal complexes with multidentate Schiff base ligands (Ray *et al.*, 2004; Saha *et al.*, 2003). Such ligands can accommodate one, two or more metal centres and thus may provide the basis for modeling of active sites of biological systems (Ikawa *et al.*, 1993; Erxleben, 2001). Up to now many Cu(II) complexes with tridentate Schiff bases have been synthesized (Mukherjee *et al.*, 2001; Mukherjee *et al.*, 2002). In this paper, we report a binuclear Cd(II) complex with tridentate Schiff base *N*-(salicylidene)-3-dimethylaminopropylamine ligand (Fig. 1).

The crystal structure of (I) is built of binuclear neutral cadmium complexes and lattice water molecules. The complex dimeric molecule $[Cd(C_{12}H_{17}N_2O)(CH_3COO)]_2$ occupies a special position on the twofold axis. Each Cd^{II} atom has a severely distorted octahedral coordination formed by two deprotonated bridging phenolic O atoms, imine and amine N atoms of the Schiff base, and two oxygen atoms of the chelate acetato group. The Cd1…Cd1ⁱ separation is 3.519 (6) Å and the Cd1—O1—Cd1ⁱ angle is equal to 101.40 (6)° [symmetry code (i): 0.5 - y, 0.5 - x, 1 - z].

The water H atom takes part in the H-bond involving one of the acetate oxygen atoms, O3, as an acceptor (Table 2). The water molecule, therefore, participates in two such H-bonds with one and the same complex molecule, thus producing isolated 1:1 complex molecule-water molecule aggregates in crystal.

Experimental

The Schiff base ligand *N*-(salicylidene)-3-dimethylaminopropylamine was prepared by refluxing 3-dimethylamino-1-propylamine (1.0 mmol) and salicyladehyde (1.0 mmol) in ethyl alcohol (10 ml) for half an hour. Cd(CH₃COO)₂·2H₂O (1.0 mmol) in 10 ml of ethyl alcohol was added to the ethyl alcohol solution of the ligand (1.0 mmol). A yellow mixture was obtained by refluxing for about an hour, then allowed to stand at room temperature. After several weeks yellow crystals suitable for X-ray diffraction were collected (yield 51%).

Refinement

All H atoms bonded to C atoms were positioned geometrically [aromatic C—H 0.93 Å and aliphatic C—H = 0.97(methyl), 0.96(methylene) or 0.93(methylidyne) Å], and the water H atom was located in the difference Fourier map. All H atoms were included in the refinement in the riding motion approximation with $U_{iso}(H) = 1.5U_{eq}(C,O)$ for methyl and water H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$] for all other H atoms.

Figures

Fig. 1. The complex molecule-water molecule aggregate in the structure of the title compound; the unlabeled atoms are derived by the (-y + 1/2, -x + 1/2, -z + 1) symmetry transformation. Displacement ellipsoids are drawn at the 30% probability level. The H atoms with the exception of that of the water molecule are omitted for clarity; the H-bonds are represented as dashed lines.

$Bis(\mu-2-\{[3-(dimethylamino)propyl]iminomethyl\} phenolato- \kappa^4 N, N', O:O) bis[(acetato-\kappa^2 O, O') cadmium(II)] monohydrate$

Crystal data

$[Cd_2(C_{12}H_{17}N_2O)_2(C_2H_3O_2)_2]$ ·H ₂ O	Z = 4
$M_r = 771.46$	$F_{000} = 1560$
Tetragonal, $P\overline{4}b2$	$D_{\rm x} = 1.598 {\rm Mg m}^{-3}$
Hall symbol: P -4 -2ab	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 17.543 (3) Å	Cell parameters from 5789 reflections
<i>b</i> = 17.543 (3) Å	$\theta = 1.9 - 29.3^{\circ}$
c = 10.420 (3) Å	$\mu = 1.37 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 (2) K
$\beta = 90^{\circ}$	Block, yellow
$\gamma = 90^{\circ}$	$0.26 \times 0.18 \times 0.15 \text{ mm}$
$V = 3206.8 (11) \text{ Å}^3$	

Data collection

Bruker APEXII area-detector diffractometer	4203 independent reflections
Radiation source: fine-focus sealed tube	3543 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 293(2) K	$\theta_{\text{max}} = 29.3^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -23 \rightarrow 24$
$T_{\min} = 0.716, \ T_{\max} = 0.820$	$k = -23 \rightarrow 24$
21724 measured reflections	$l = -14 \rightarrow 10$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.022$	$w = 1/[\sigma^2(F_0^2) + (0.0216P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.046$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
4203 reflections	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
189 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1788 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.014 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1	• , •			• , •	1. 1	1 .	,	18	Ζ.
Fractional	atomic	coordinates	and	isotronic	nr	eauwalent	isofronic	disnl	acement	narameters	IA^{-}	•)
1 / actionat	aionnic	coorainaics	unu	isonopie	01	cquivaieni	isonopie	aispi	accment	parameters	(11	/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.231751 (8)	0.354386 (8)	0.634193 (16)	0.04198 (5)
01	0.22984 (9)	0.36177 (8)	0.41579 (14)	0.0451 (3)
02	0.29307 (13)	0.32036 (13)	0.83507 (19)	0.0755 (6)
03	0.32810 (12)	0.26684 (11)	0.6582 (2)	0.0729 (6)
O1W	0.35631 (13)	0.14369 (13)	0.5000	0.1164 (15)
H1W	0.3524	0.1783	0.5489	0.175*
N1	0.30084 (11)	0.46347 (10)	0.60836 (19)	0.0480 (5)
N2	0.14606 (12)	0.43888 (13)	0.74563 (19)	0.0531 (5)
C1	0.32474 (12)	0.45900 (11)	0.3765 (2)	0.0428 (5)
C2	0.27952 (12)	0.39507 (12)	0.3380 (2)	0.0409 (5)
C3	0.28801 (14)	0.37069 (13)	0.2108 (3)	0.0472 (6)
H3A	0.2610	0.3280	0.1838	0.057*
C4	0.33442 (13)	0.40717 (14)	0.1246 (3)	0.0529 (6)
H4A	0.3378	0.3891	0.0409	0.063*
C5	0.37623 (15)	0.47056 (14)	0.1605 (3)	0.0568 (7)
H5A	0.4067	0.4962	0.1016	0.068*
C6	0.37144 (13)	0.49453 (15)	0.2855 (2)	0.0543 (6)
H6A	0.4005	0.5362	0.3109	0.065*
C7	0.32879 (13)	0.49019 (14)	0.5056 (3)	0.0488 (6)
H7A	0.3554	0.5358	0.5138	0.059*
C8	0.31653 (15)	0.50458 (18)	0.7280 (2)	0.0630 (8)
H8A	0.3549	0.5432	0.7120	0.076*
H8B	0.3369	0.4692	0.7909	0.076*
C9	0.24522 (17)	0.54242 (17)	0.7824 (3)	0.0687 (8)

supplementary materials

H9A	0.2212	0.5718	0.7147	0.082*
H9B	0.2605	0.5778	0.8491	0.082*
C10	0.18630 (15)	0.48761 (16)	0.8382 (2)	0.0650 (8)
H10A	0.2117	0.4550	0.9000	0.078*
H10B	0.1487	0.5173	0.8847	0.078*
C11	0.08785 (16)	0.39618 (17)	0.8156 (3)	0.0764 (9)
H11A	0.0521	0.4311	0.8533	0.115*
H11B	0.1116	0.3666	0.8821	0.115*
H11C	0.0616	0.3628	0.7576	0.115*
C12	0.10697 (15)	0.48511 (18)	0.6487 (3)	0.0777 (8)
H12A	0.0741	0.5211	0.6904	0.116*
H12B	0.0772	0.4526	0.5941	0.116*
H12C	0.1440	0.5119	0.5981	0.116*
C13	0.33258 (17)	0.27384 (17)	0.7767 (3)	0.0612 (7)
C14	0.38725 (18)	0.22233 (18)	0.8470 (4)	0.0854 (10)
H14A	0.4368	0.2454	0.8489	0.128*
H14B	0.3902	0.1741	0.8038	0.128*
H14C	0.3696	0.2147	0.9333	0.128*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.04226 (9)	0.04557 (9)	0.03810 (8)	-0.00513 (7)	-0.00350 (8)	-0.00795 (8)
01	0.0479 (10)	0.0484 (10)	0.0390 (7)	-0.0141 (7)	-0.0023 (7)	-0.0046 (7)
O2	0.0807 (13)	0.0862 (15)	0.0596 (14)	0.0015 (12)	-0.0111 (11)	-0.0070 (11)
O3	0.0770 (13)	0.0799 (14)	0.0617 (14)	0.0208 (10)	-0.0223 (11)	-0.0109 (11)
O1W	0.126 (2)	0.126 (2)	0.096 (3)	0.060 (2)	-0.010 (2)	-0.010 (2)
N1	0.0443 (10)	0.0502 (10)	0.0495 (13)	-0.0073 (8)	-0.0016 (9)	-0.0160 (9)
N2	0.0466 (12)	0.0550 (13)	0.0577 (13)	-0.0027 (9)	0.0051 (9)	-0.0113 (10)
C1	0.0417 (10)	0.0389 (11)	0.0477 (12)	0.0012 (8)	0.0027 (11)	0.0012 (11)
C2	0.0401 (11)	0.0407 (12)	0.0420 (14)	0.0019 (9)	-0.0041 (9)	-0.0015 (9)
C3	0.0491 (13)	0.0496 (14)	0.0429 (14)	0.0043 (10)	-0.0050 (11)	-0.0025 (11)
C4	0.0545 (13)	0.0636 (15)	0.0405 (13)	0.0120 (11)	-0.0002 (12)	0.0050 (13)
C5	0.0582 (14)	0.0570 (15)	0.0553 (17)	0.0029 (12)	0.0090 (12)	0.0120 (12)
C6	0.0554 (15)	0.0452 (14)	0.0623 (15)	-0.0043 (11)	0.0012 (12)	0.0029 (13)
C7	0.0456 (14)	0.0402 (13)	0.0604 (15)	-0.0063 (11)	0.0027 (11)	-0.0089 (12)
C8	0.0590 (16)	0.0711 (19)	0.0590 (16)	-0.0209 (14)	0.0052 (13)	-0.0311 (15)
C9	0.0747 (19)	0.0615 (17)	0.0698 (19)	-0.0139 (13)	0.0097 (16)	-0.0324 (15)
C10	0.0618 (16)	0.0729 (18)	0.0603 (18)	-0.0035 (13)	0.0069 (13)	-0.0263 (14)
C11	0.0646 (17)	0.0703 (19)	0.094 (2)	-0.0121 (15)	0.0305 (17)	-0.0211 (16)
C12	0.0677 (17)	0.0829 (19)	0.0824 (19)	0.0123 (15)	-0.0164 (17)	-0.0101 (19)
C13	0.0589 (17)	0.0632 (19)	0.0614 (19)	-0.0164 (14)	-0.0203 (14)	0.0033 (15)
C14	0.087 (2)	0.0793 (19)	0.090 (3)	-0.0130 (16)	-0.036 (2)	0.0237 (19)

Geometric parameters (Å, °)

Cd1—O1 ⁱ	2.2685 (14)	C4—H4A	0.9300
Cd1—O1	2.2797 (16)	C5—C6	1.371 (3)

Cd1—N1	2.2812 (19)	С5—Н5А	0.9300
Cd1—O3	2.2976 (19)	С6—Н6А	0.9300
Cd1—N2	2.409 (2)	С7—Н7А	0.9300
Cd1—O2	2.428 (2)	C8—C9	1.525 (4)
Cd1-C13	2.707 (3)	C8—H8A	0.9700
O1—C2	1.326 (3)	C8—H8B	0.9700
O1—Cd1 ⁱ	2.2685 (14)	C9—C10	1.527 (4)
O2—C13	1.232 (4)	С9—Н9А	0.9700
O3—C13	1.243 (4)	С9—Н9В	0.9700
O1W—H1W	0.7950	C10—H10A	0.9700
N1—C7	1.268 (3)	C10—H10B	0.9700
N1—C8	1.466 (3)	C11—H11A	0.9600
N2—C11	1.462 (3)	C11—H11B	0.9600
N2—C12	1.466 (3)	C11—H11C	0.9600
N2—C10	1.470 (3)	C12—H12A	0.9600
C1—C6	1.400 (3)	C12—H12B	0.9600
C1—C2	1.431 (3)	C12—H12C	0.9600
C1—C7	1.454 (3)	C13—C14	1.508 (4)
C2—C3	1.400 (3)	C14—H14A	0.9600
C3—C4	1.371 (4)	C14—H14B	0.9600
С3—НЗА	0.9300	C14—H14C	0.9600
C4—C5	1.384 (3)		
O1 ⁱ —Cd1—O1	78.30 (6)	C4—C5—H5A	121.0
O1 ⁱ —Cd1—N1	154.63 (6)	C5—C6—C1	122.9 (2)
O1—Cd1—N1	80.93 (6)	С5—С6—Н6А	118.6
O1 ⁱ —Cd1—O3	96.99 (6)	С1—С6—Н6А	118.6
O1—Cd1—O3	99.08 (7)	N1—C7—C1	128.6 (2)
N1—Cd1—O3	100.53 (7)	N1—C7—H7A	115.7
O1 ⁱ —Cd1—N2	93.45 (6)	С1—С7—Н7А	115.7
O1—Cd1—N2	115.91 (7)	N1—C8—C9	112.1 (2)
N1—Cd1—N2	82.66 (7)	N1—C8—H8A	109.2
O3—Cd1—N2	144.85 (8)	С9—С8—Н8А	109.2
O1 ⁱ —Cd1—O2	110.99 (6)	N1—C8—H8B	109.2
O1—Cd1—O2	151.78 (7)	С9—С8—Н8В	109.2
N1—Cd1—O2	94.16 (7)	H8A—C8—H8B	107.9
O3—Cd1—O2	54.24 (8)	C8—C9—C10	115.0 (2)
N2—Cd1—O2	90.70 (8)	С8—С9—Н9А	108.5
O1 ⁱ —Cd1—C13	104.98 (7)	С10—С9—Н9А	108.5
O1-Cd1-C13	125.93 (9)	С8—С9—Н9В	108.5
N1—Cd1—C13	98.94 (7)	С10—С9—Н9В	108.5
O3—Cd1—C13	27.20 (9)	Н9А—С9—Н9В	107.5
N2—Cd1—C13	117.67 (9)	N2—C10—C9	116.2 (2)
O2—Cd1—C13	27.06 (8)	N2—C10—H10A	108.2
C2—O1—Cd1 ⁱ	127.33 (13)	С9—С10—Н10А	108.2
C2—O1—Cd1	128.73 (13)	N2—C10—H10B	108.2
$Cd1^{i}$ —O1—Cd1	101.40 (6)	C9—C10—H10B	108.2
C13 = O2 = Cd1	89 22 (17)	H10A - C10 - H10B	107.4
015 02 041	57.22 (17)		т О / . т

supplementary materials

C13—O3—Cd1	95.09 (19)	N2—C11—H11A	109.5
C7—N1—C8	117.6 (2)	N2—C11—H11B	109.5
C7—N1—Cd1	127.97 (16)	H11A—C11—H11B	109.5
C8—N1—Cd1	114.34 (16)	N2—C11—H11C	109.5
C11—N2—C12	107.5 (2)	H11A—C11—H11C	109.5
C11—N2—C10	107.8 (2)	H11B—C11—H11C	109.5
C12—N2—C10	110.8 (2)	N2—C12—H12A	109.5
C11—N2—Cd1	111.17 (16)	N2—C12—H12B	109.5
C12—N2—Cd1	107.47 (15)	H12A—C12—H12B	109.5
C10—N2—Cd1	112.01 (16)	N2—C12—H12C	109.5
C6—C1—C2	118.9 (2)	H12A—C12—H12C	109.5
C6—C1—C7	115.5 (2)	H12B-C12-H12C	109.5
C2—C1—C7	125.5 (2)	O2—C13—O3	121.4 (3)
O1—C2—C3	120.9 (2)	O2-C13-C14	121.0 (3)
O1—C2—C1	122.6 (2)	O3—C13—C14	117.6 (3)
C3—C2—C1	116.4 (2)	O2—C13—Cd1	63.73 (15)
C4—C3—C2	122.7 (2)	O3—C13—Cd1	57.70 (15)
С4—С3—НЗА	118.6	C14—C13—Cd1	174.2 (2)
С2—С3—НЗА	118.6	C13—C14—H14A	109.5
C3—C4—C5	120.8 (3)	C13—C14—H14B	109.5
C3—C4—H4A	119.6	H14A—C14—H14B	109.5
C5—C4—H4A	119.6	C13—C14—H14C	109.5
C6—C5—C4	118.1 (2)	H14A—C14—H14C	109.5
С6—С5—Н5А	121.0	H14B—C14—H14C	109.5
O1 ⁱ —Cd1—O1—C2	-168.64 (14)	O1 ⁱ —Cd1—N2—C10	157.39 (17)
N1—Cd1—O1—C2	26.00 (17)	O1—Cd1—N2—C10	-123.95 (16)
O3—Cd1—O1—C2	-73.32 (17)	N1-Cd1-N2-C10	-47.79 (17)
N2—Cd1—O1—C2	103.21 (17)	O3-Cd1-N2-C10	50.1 (2)
O2—Cd1—O1—C2	-55.8 (2)	O2—Cd1—N2—C10	46.31 (17)
C13—Cd1—O1—C2	-68.51 (19)	C13—Cd1—N2—C10	48.49 (19)
O1 ⁱ —Cd1—O1—Cd1 ⁱ	-5.94 (8)	Cd1 ⁱ —O1—C2—C3	-4.0 (3)
N1—Cd1—O1—Cd1 ⁱ	-171.30 (8)	Cd1—O1—C2—C3	154.54 (16)
O3—Cd1—O1—Cd1 ⁱ	89.38 (8)	Cd1 ⁱ —O1—C2—C1	173.45 (14)
N2—Cd1—O1—Cd1 ⁱ	-94.09 (8)	Cd1—O1—C2—C1	-28.1 (3)
O2—Cd1—O1—Cd1 ⁱ	106.87 (13)	C6—C1—C2—O1	-175.0 (2)
C13—Cd1—O1—Cd1 ⁱ	94.19 (9)	C7—C1—C2—O1	7.0 (3)
O1 ⁱ —Cd1—O2—C13	81.80 (18)	C6—C1—C2—C3	2.5 (3)
O1—Cd1—O2—C13	-23.0 (2)	C7—C1—C2—C3	-175.5 (2)
N1-Cd1-O2-C13	-101.55 (17)	O1—C2—C3—C4	174.9 (2)
O3—Cd1—O2—C13	-1.56 (17)	C1—C2—C3—C4	-2.6 (3)
N2-Cd1-O2-C13	175.76 (17)	C2—C3—C4—C5	0.5 (4)
O1 ⁱ —Cd1—O3—C13	-109.33 (18)	C3—C4—C5—C6	1.7 (4)
O1-Cd1-O3-C13	171.47 (17)	C4—C5—C6—C1	-1.8 (4)
N1-Cd1-O3-C13	89.09 (18)	C2—C1—C6—C5	-0.3 (4)
N2-Cd1-O3-C13	-3.1 (3)	C7—C1—C6—C5	177.8 (2)
O2-Cd1-O3-C13	1.55 (16)	C8—N1—C7—C1	177.0 (2)
O1 ⁱ —Cd1—N1—C7	-47.2 (3)	Cd1—N1—C7—C1	-0.1 (4)

O1—Cd1—N1—C7	-11.9 (2)	C6—C1—C7—N1	-170.0 (2)	
O3—Cd1—N1—C7	85.7 (2)	C2-C1-C7-N1	8.0 (4)	
N2—Cd1—N1—C7	-129.7 (2)	C7—N1—C8—C9	111.1 (3)	
O2-Cd1-N1-C7	140.1 (2)	Cd1—N1—C8—C9	-71.4 (3)	
C13—Cd1—N1—C7	113.3 (2)	N1-C8-C9-C10	71.1 (3)	
O1 ⁱ —Cd1—N1—C8	135.62 (19)	C11—N2—C10—C9	-174.9 (3)	
O1—Cd1—N1—C8	170.92 (19)	C12—N2—C10—C9	-57.5 (3)	
O3—Cd1—N1—C8	-91.45 (18)	Cd1—N2—C10—C9	62.5 (3)	
N2—Cd1—N1—C8	53.10 (18)	C8—C9—C10—N2	-69.1 (3)	
O2-Cd1-N1-C8	-37.07 (19)	Cd1—O2—C13—O3	2.7 (3)	
C13—Cd1—N1—C8	-63.89 (19)	Cd1-02-C13-C14	-176.2 (2)	
O1 ⁱ —Cd1—N2—C11	36.70 (19)	Cd1—O3—C13—O2	-2.9 (3)	
O1—Cd1—N2—C11	115.36 (18)	Cd1-03-C13-C14	176.1 (2)	
N1-Cd1-N2-C11	-168.48 (19)	O1 ⁱ —Cd1—C13—O2	-106.95 (17)	
O3—Cd1—N2—C11	-70.6 (2)	O1-Cd1-C13-O2	166.80 (15)	
O2-Cd1-N2-C11	-74.38 (19)	N1-Cd1-C13-O2	81.57 (17)	
C13—Cd1—N2—C11	-72.2 (2)	O3—Cd1—C13—O2	177.2 (3)	
O1 ⁱ —Cd1—N2—C12	-80.67 (17)	N2-Cd1-C13-O2	-4.79 (19)	
O1—Cd1—N2—C12	-2.01 (18)	O1 ⁱ —Cd1—C13—O3	75.83 (18)	
N1—Cd1—N2—C12	74.14 (17)	O1-Cd1-C13-O3	-10.4 (2)	
O3—Cd1—N2—C12	172.03 (16)	N1-Cd1-C13-O3	-95.66 (18)	
O2-Cd1-N2-C12	168.25 (17)	N2-Cd1-C13-O3	177.98 (17)	
C13—Cd1—N2—C12	170.43 (16)	O2-Cd1-C13-O3	-177.2 (3)	
Symmetry codes: (i) $-y+1/2$, $-x+1/2$, $-z+1$.				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1W—H1W···O3	0.80	1.97	2.762 (3)	172

